Hitachi Single Chip Inverter IC Application Guide

(Applicable models)

<table>
<thead>
<tr>
<th></th>
<th>VSP-input type</th>
<th>6-input type</th>
</tr>
</thead>
<tbody>
<tr>
<td>For \leq AC115V</td>
<td>ECN30102</td>
<td>ECN30611</td>
</tr>
<tr>
<td></td>
<td>ECN30105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECN30107</td>
<td></td>
</tr>
<tr>
<td>For \leq AC230V</td>
<td>ECN30204</td>
<td>ECN30601</td>
</tr>
<tr>
<td></td>
<td>ECN30206</td>
<td>ECN30603</td>
</tr>
<tr>
<td></td>
<td>ECN30207</td>
<td>ECN30604</td>
</tr>
</tbody>
</table>

Development Department
Power Device Division
Hitachi, Ltd., Power Systems, Power & Industrial System Division
Precautions for Safe Use and Notices

If semiconductor devices are handled inappropriate manner, failures may result. For this reason, be sure to read this “Application Guide” before use.

⚠️ This mark indicates an item about which caution is required.

⚠️ CAUTION This mark indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury and damage to property.

⚠️ CAUTION

(1) Regardless of changes in external conditions during use “absolute maximum ratings” should never be exceed in designing electronic circuits that employ semiconductors. In the case of pulse use, furthermore, “safe operating area (SOA)” precautions should be observed.

(2) Semiconductor devices may experience failures due to accident or unexpected surge voltages. Accordingly, adopt safe design features, such as redundancy or prevention of erroneous action, to avoid extensive damage in the event of a failure.

(3) In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment) safety should be ensured by using semiconductor devices that feature assured safety or by means of user’s fail-safe precautions or other arrangement. Or consult Hitachi’s sales department staff.

(If a semiconductor device fails, there may be cases in which the semiconductor device, wiring or wiring pattern will emit smoke or cause a fire or in which the semiconductor device will burst)

NOTICES

1. This Application Guide contains the specifications, characteristics (in figures and tables), dimensions and handling notes concerning power semiconductor products (hereinafter called “products”) to aid in the selection of suitable products.

2. The specifications and dimensions, etc. stated in this Application Guide are subject to change without prior notice to improve products characteristics. Before ordering, purchasers are advised to contact Hitachi’s sales department for the latest version of this Application Guide and specifications.

3. In no event shall Hitachi be liable for any damage that may result from an accident or any other cause during operation of the user’s units according to this Application Guide. Hitachi assumes responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this Application Guide.

4. In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.

5. No license is granted by this Application Guide under any patents or other rights of any third party or Hitachi, Ltd.

6. This Application Guide may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi, Ltd.

7. The products (technologies) described in this Application Guide are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.
Hitachi offers even better products by taking advantage of our long years of experiences in the market.
Hitachi helps you save even more energy under our policy of "quality first."

Advanced

Hitachi Single-chip Inverter ICs

- **Much easy to use**
 It becomes easy to design the system power supply by the power supply up/down sequence free design of IC. *1).

- **Much reduce the effects on the environment**
 It conforms to lead (Pb) free phase category "Phase 3A" *4) of “electronic equipment” of JEITA *3) ETR-7021 (issue in June, 2004)".

- **Much strong noise-immunity**
 A built-in cancellation circuit designed to inhibit noises of no more than about 1 μs, reduces output malfunctions induced by noises in the input signal line *2).

*1) This applies to ECN30107s, ECN30611s, ECN30206s, ECN30207s, ECN30603s and ECN30604s.
*2) This applies to ECN30204s, ECN30206s, ECN30207s, ECN30601s, ECN30603s and ECN30604s
*3) JEITA: Japan Electronics and Information Technology Industries Association
*4) Phase 3A: The entire parts must be lead-free, include the internal connection and the part materials, that exclude exemption of EU RoHS *5) directive.
Contents

1. Overview
 1-1. Dielectric isolation (DI) ... 1
 1-2. Single-chip Inverter ICs ... 2
 1-3. Composition of an inverter IC ... 2
 1-4. Motor drive system .. 3
 1-5. Block diagram of inverter ICs ... 3

2. Content of specification ... 4

3. Package
 3-1. Model name ... 5
 3-2. Production lot number ... 5
 3-3. Marking .. 5
 3-4. Package outline ... 6

4. Pins
 4-1. Pin arrangement ... 8
 4-2. Functions of the pins ... 9

5. Functions and operational precautions
 5-1. Protection function ... 13
 (1) Detection of VCC under voltage
 (2) Current limitation
 (a) Operation description
 (b) How to set up
 (c) Noises of the RS pin
 (d) Precautions on wiring
 (e) Motor lock
 (3) Protection against short circuit
 5-2. Charge pump circuit ... 16
 (1) Description of operation
 5-3. Power supply sequence .. 17
 5-4. VB power supply ... 18
 5-5. Operation of the output IGBT of the VSP-input type 19
 (1) PWM operation
 (2) Output all-off function
 (a) Function description
 (b) Precautions
 5-6. Internal Filter .. 20
 5-7. Dead time .. 21
 5-8. Calculation of power consumption ... 24
 5-9. Derating ... 26
 5-10. External components ... 27
6. Handling Instruction
 6-1 Mounting
 (1) Insulation between pins
 (2) Connection of tabs
 (3) Soldering conditions
 6-2 Antistatic measures

7. Quality
 7-1 Quality tests
 7-2 QC Control Flow

8. Inverter IC Handling Note
 8-1 Electrical static destruction of VSP pin caused by external surge
 8-2 Electrical static destruction of FG pin caused by external surge
 8-3 IC destruction by external surge inputted to VS and VCC line (1)
 8-4 IC destruction by external surge inputted to VS and VCC line (2)
 8-5 IC destruction by external surge inputted to VS and VCC line (3)
 8-6 IC destruction by line noise put into VCC (1)
 8-7 IC destruction by line noise put into VCC (2)
 8-8 IC destruction by relay noise of inspection machine
 8-9 Motor failure (missing phase output)
1. Overview

1-1. Dielectric isolation (DI)

- **Hitachi Intelligent Power IC**
- A logical device and a power-switching device can be integrated in a single chip.
- No mutual interference occurs, not only between devices but also between device and board.

The Hitachi high-voltage monolithic IC is an intelligent power IC, developed based on a unique dielectric isolation technology (DI). It is structured that there be no latch-up between devices and between device and board, and that an IC can be made so a high-dielectric-strength, large-current output circuit is mixed with a logical circuit. The ICs can be made smaller than conventional discrete boards and hybrid ICs.

- **Latch-up-free IC offers wider range of applications.**

The Hitachi high-voltage monolithic IC developed with dielectric isolation technology are such that the devices are isolated with SiO\(_2\) layers in between, unlike P-N junction isolation. In consequence, it can remain latched-up free even under high-temperature, large-current, high-noise, and other severe conditions. This technology also enables them to be extremely flexible in circuit designing and thus to meet more customer requirement.

![Dielectric isolation and P-N junction isolation](image)

Fig. 1-1. Dielectric isolation and P-N junction isolation
1-2. Single-chip Inverter ICs

Hitachi Single-chip Inverter ICs are monolithic ICs integrating various constituent devices and circuits required for inverter control on a single chip with dielectric isolation technology. They are for driving motors, best suited for controlling small three-phase brushless DC motors. The advantage of downsizing by the use of a single-chip structure can be used to reduce the control board in size, which facilitates the incorporate of such ICs in motors.

1-3. Composition of an inverter IC

An inverter is a device that converts DC currents into AC. It can be used to drive motors for efficient variable-speed control. Fig. 1-3 shows the basic configuration of an inverter IC required for that purpose. To drive the three-phase motor with an inverter, six IGBTs and free wheel diodes are used as output stages. The IC consists of an IGBT driving power circuit, level shift circuit, a logic circuit and other components for IGBT control. Hitachi Inverter ICs can directly receive high voltage supplied from rectifying commercial AC power, because they have high dielectric strength. This obviates the need of a step-down circuit, thus inhibiting efficiency cuts induced by voltage conversion.
1-4. Motor drive system

Three-phase inverters generally fall into two categories according to the method of commutation of the six output-stage devices: 120-degree energization and 180-degree energization. The method of 120-degree energization is such that the device on the top arm and that on the bottom arm are controlled to set the energization period between phases to 120 degrees, thus transferring the current from phase U to V to W, thus driving the motor. Hitachi Single-chip Inverter ICs (VSP-input series) are based on 120-degree energization and receive position signals from hall ICs and VSP signals that constitute speed instructions, thus conducting PWM control by the chopping action of the lower arm. For uses of 180-degree energization, a six-input series are provided where six output stage devices can be controlled by each input signal.

1-5. Block Diagram of Inverter IC

Fig. 1-4 shows a block diagram of ECN30206 for receiving 230V AC, as an example of inverter IC. Its main function is to receive input signals from the three phases of hall ICs of the brushless DC motor, turns on and off the particular IGBTs with the three-phase distribution circuit, and to drive the motor. Other components include a charge pump circuit as a power self-supply circuit, a triangular wave oscillator and a comparator-based PWM generation circuit as rpm control circuits, an over current detection circuit which provides a current trip function at motor startup, and an under voltage detection circuit that detects power drops in the drive circuit and turns off the output.
2. Content of specifications

The following items have been described in the specifications.

(1) Maximum Ratings
- It describes direct conditions (electric, thermal use conditions) of leading to IC destruction and so on. And the safety operating range with operating conditions is shown by minimum or maximum value.
- Each item is an independent item. Also, these items show the ratings value of not exceeding any use conditions. The maximum rating and other characteristics are mutually related, and not permitted at the same time.

(2) Electrical Characteristics
- It provides for an electric characteristic item that shows the function of IC, and describes minimum, standard, and maximum.

(3) Function and Operation
- It describes Truth Table, Time Chart, Protection Function and so on.

(4) Standard application
- It describes external parts to operate IC.

(5) Pin Assignments and Pin Definitions
- It describes pin assignments, pin names and pin definitions.

(6) Important notice Precautions
- It describes notes of the static electricity, the maximum rating, handling and so on.

(7) Appendix and Reference data
- It describes SOA and Deratings.
3. Package

3-1. Model name

ECN 30206 SP

- Package type (SP, SPV, SPR)
- Series name
 Hitachi High-voltage IC

3-2. Production lot number

5 E 12 F

- Control number
 It shows by two digits or less (alphabetical character).
 Lead (Pb) Free: Last digit is Marked as “F”
- Quality control number.
 It shows by one digit or two digits. (Numerals from 1 to 9,
 alphabetical character (except O and I) or space is used.)
- Assembled month as shown in below
 January, A; February, B; March, C; April, D; May, E; June, K;
 July, L; August, M; September, N; October, X; November, Y;
 and December, Z
- Least significant digit of Assembled year (A.D.)

3-3. Marking

Fig. 3-1. Marking diagram

Model name

JAPAN

Index pin
3-4. Package Outline

Table 3-1(1). Package Dimensions (unit: mm)

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Package Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>(SP-23TA)</td>
<td></td>
</tr>
<tr>
<td>SPV</td>
<td></td>
</tr>
<tr>
<td>(SP-23TB)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-1(2). Package Dimensions (unit: mm)

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Package Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPR (SP-23TR)</td>
<td></td>
</tr>
</tbody>
</table>
4. Pins

4-1. Pin assignments

Table 4-1. Assignment table of pins

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Applicable Model</th>
<th>ECN30102</th>
<th>ECN30105</th>
<th>ECN30107</th>
<th>ECN30207</th>
<th>ECN30204</th>
<th>ECN30206</th>
<th>ECN30611</th>
<th>ECN30601</th>
<th>ECN30603</th>
<th>ECN30604</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>VS2</td>
<td>VS2</td>
<td>VS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>MW</td>
<td>MW</td>
<td>MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>note1</td>
<td>note1</td>
<td>note1</td>
<td>note1</td>
<td>note1</td>
<td>note1</td>
<td>note1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>GH2</td>
<td>GH2</td>
<td>GH2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>GL</td>
<td>GL</td>
<td>GL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>C+</td>
<td>C+</td>
<td>C+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>C-</td>
<td>C-</td>
<td>C-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>CL</td>
<td>CL</td>
<td>CL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>CB</td>
<td>CB</td>
<td>CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>CTR</td>
<td>CTR</td>
<td>CTR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>VTR</td>
<td>VTR</td>
<td>VTR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>VSP</td>
<td>VSP</td>
<td>VSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>FG</td>
<td>FG</td>
<td>FG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>NC</td>
<td>NC</td>
<td>DM</td>
<td>note1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>HW</td>
<td>HW</td>
<td>RS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>HV</td>
<td>HV</td>
<td>WT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>HU</td>
<td>HU</td>
<td>VT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>RS</td>
<td>RS</td>
<td>UT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>GH1</td>
<td>GH1</td>
<td>GH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>MU</td>
<td>MU</td>
<td>MU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>VS1</td>
<td>VS1</td>
<td>VS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>MV</td>
<td>MV</td>
<td>MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: NC represents an unconnected pin. It is not connected to an internal chip.
4-2. Functions of the pins

Table 4-2. List of pins and their functions (pins common to all models)

<table>
<thead>
<tr>
<th>No.</th>
<th>Pin</th>
<th>Item</th>
<th>Functions and Precautions</th>
<th>Related items</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| 1 | VCC | Control power supply pin | • Powers the drive circuits for the top and bottom arms, the charge pump circuit, the built-in VB supply circuit, and others.
• Determine the capacity of the power supply for VCC allowing a margin by adding the standby current Icc and the current taken out of CB pin. | 5-1. (1) VCC under voltage Detection
5-3. Power supply sequence
8-3 to 8-7 IC destruction by external surge or line noise | 5-1. (1) VCC under voltage Detection
5-3. Power supply sequence
8-3 to 8-7 IC destruction by external surge |
| 2 | VS1 | IGBT power pin | • Connected to the collector of the top arm IGBT.
• Connect pins VS1 and VS2 close to the IC pin. If either pin is open, the IC may get destroyed. | 5-3. Power supply sequence
8-3 to 8-5 IC destruction by external surge | High voltage pin |
| | VS2 | | | | |
| 3 | CB | Output pin of the build-in VB supply | • Outputs a voltage (typ 7.5V) generated in the build-in VB power supply.
• Provides power from the VB power supply to the input, three-phase distribution, FG, internal clock, over current detection, and other circuits.
• Connect a capacitor C0 to prevent oscillation to the CB pin. Capacitor with capacity of 0.22μF ±20% is recommended | 5-4. VB power supply | 5-4. VB power supply |
| 4 | C+ | Top arm drive circuit power pin | • Powers the drive circuit for the top arm.
• Connect external components (capacitor and diode). | 5-2. Charge pump circuit | 5-2. Charge pump circuit |
| | C- | | | | |
| | CL | Charge pump circuit pin | | | |
| 5 | GL | Control ground pin | • It is the ground pin for VCC and VB power lines. | | |
| 6 | GH1 | IGBT Emitter pin | • Connected to the emitter of the bottom arm IGBT.
• Connected to a shunt resistor Rs to detect over currents.
• Connect the GH1 and GH2 near the IC pin. If either pin is open, the IC may get destroyed. | 5-1. (2) Current limitation | 5-1. (2) Current limitation |
| | GH2 | | | | |

![Equivalent Circuit Diagram](image-url)
Table 4-2. List of pins and their functions (pins common to all models)
<Continued>

<table>
<thead>
<tr>
<th>No.</th>
<th>Pin</th>
<th>Item</th>
<th>Functions and Precautions</th>
<th>Related items</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| 7 | CR | PWM frequency setting pin (VSP-input type) | • Externally connected resistors and capacitors are used to determine the frequency of the PWM (internal clock).
• Frequencies are roughly determined by the following equation:
\[f = \frac{0.494}{(C \times R)} \text{ (Hz)} \] | • 5-5. (1) PWM operation |
| | VTR | Clock frequency setting pin (6-input type) | | | |
| 8 | MU | Inverter output pin | • It is an output of a three-phase bridge consisting of six IGBTs and free wheel diodes. | |
| | MV | | | |
| | MW | | | | High-voltage pin |
| 9 | RS | Input pin for over current detection signals | • Monitors the voltage of the Rs shunt resistor and detects its over current status. | • 5-1. (2) Current limitation |

Equivalent Circuit

Note 1) Input resistor value

- typ. 300Ω
- ECN30102
- ECN30107
- ECN30206
- ECN30207
- ECN30611
- ECN30603
- ECN30604

- typ. 150Ω
- ECN30105
- ECN30204
- ECN30601

Note 1) Input resistor value

- typ. 300Ω
- ECN30102
- ECN30107
- ECN30206
- ECN30207
- ECN30611
- ECN30603
- ECN30604

- typ. 150Ω
- ECN30105
- ECN30204
- ECN30601
Table 4-3. List of pins and their functions (pin different according to model)

<table>
<thead>
<tr>
<th>No.</th>
<th>Pin</th>
<th>Item Description</th>
<th>Applicable models</th>
<th>Functions and Precautions</th>
<th>Related items</th>
</tr>
</thead>
</table>
| 1 | VSP | Speed instruction input pin | ECN30102 ECN30105 ECN30107 ECN30204 ECN30206 ECN30207 | • Input a speed instruction signal to generate a PWM signal.
• Entering an all-off operating voltage of the VSP terminal (typ. 1.23V) turns off all IGBTs.
• If a noise is detected, install a resistor and/or capacitor. | 5-3. Power supply sequence
5-5. Operation of the output IGBT of the VSP input type
8-1. Electrical static destruction of VSP pin caused by external surge
Data Sheet
4.2 Input terminals |
| | | | | 5-3. Power supply sequence
5-5. Operation of the output IGBT of the VSP input type
8-1. Electrical static destruction of VSP pin caused by external surge
Data Sheet
4.2 Input terminals |
| 2 | HU HV HW | Hall signal input pin | ECN30102 ECN30105 ECN30107 ECN30204 ECN30206 ECN30207 | • Input a hall IC signal. Based on that signal, the system controls the phase switchover of the output IGBT.
• If a noise is detected, install a capacitor.
• The maximum input voltage is VB+0.5V. The output voltage of hall IC must not exceed the maximum input voltage. | 3.1. Truth table
4.2. Input Pins |
| 3 | FG | Motor rotation speed monitoring pin | ECN30102 ECN30105 ECN30107 ECN30204 ECN30206 ECN30207 | • Output pulses according to the input signals of the HU, HV and HW.
• Motor rotation speed can be monitored by measuring the frequency of output pulse.
• Motor rotation speed can be monitored by measuring the frequency of output pulse.
• Connect an external circuit such as a pull-up resistor of around 5kΩ to 10kΩ to VCC or CB pin. | 8-2. Electrical static destruction of FG pin caused by external surge
Data Sheet
3.2 Time chart |

Note 1: Input resistor value

- typ. 300Ω
 ECN30102 ECN30107 ECN30206 ECN30207
- typ. 150Ω
 ECN30105 ECN30204
Table 4-3. List of pins and their functions (pins common to all models) <Continued>

<table>
<thead>
<tr>
<th>No.</th>
<th>Pin</th>
<th>Item</th>
<th>Applicable models</th>
<th>Functions and Precautions</th>
<th>Related items</th>
</tr>
</thead>
</table>
| 4 | DM | Direction of motor rotation detecting pin | ECN30204, ECN30206 | • High or Low level output according to the input signal of the HU, HV and HW.
• Direction of motor rotation can be detected by measuring output voltage.
• Connect an external circuit such as a pull-up resistor of around 5kΩ to 10kΩ to VCC or CB pin.
• Direction of motor rotation relates to the DM output, as shown below;
| | | | | | Direction of motor rotation | DM output | |
| | | | | | U --> V --> W | L | |
| | | | | | U --> W --> V | H | |
| | | | | | Equivalent Circuit | | |

5 | UT | Control input pin of each arm | ECN30611, ECN30601, ECN30603, ECN30604 | • Input control signals of each arm.
• In each input, input the High level turns on the output IGBT. The UT, VT, and WT correspond to the top arm output IGBT.
• The UB, VB, and WB correspond to the bottom arm output IGBT.
• The input voltage is 5V CMOS or TTL logic level compatible.
• If a noise is detected, install a resistor and/or capacitor.
• The maximum input voltage is VB+0.5V.
	VT				5-3. Power supply sequence		
	WT				5-7. Dead time		
	UB				Data sheet		
	VB				4.2. Input Pins		
	WB				Equivalent Circuit		

![Equivalent Circuit](image)

Note 1) Input resistor value

- typ. 300Ω ECN30611, ECN30603, ECN30604
- typ. 150Ω ECN30601

- 12 -
5. Functions and operational precautions

5-1. Protection function

(1) Detection of VCC under voltage (LVSD operation)
- When the VCC voltage goes below the LVSD operating voltage (LVSDON), the output IGBTs of the top and bottom arms are all turned off regardless of the input signal.
- This function has hysteresis (Vrh). When the VCC voltage goes up again, the system goes back to a state where the output IGBT operates according to the input signal at a level equal to or exceeding the LVSD recovery voltage (LVSDOFF).

![Timing chart for detection of VCC under voltage (LVSD operation)](image)

(2) Current limitation
 (a) Operation description
- The system monitors the current flowing through the shunt resistance Rs at the RS pin (see Fig. 5-2).
 When the reference voltage for current limitation (Vref = typ. 0.5V) is exceeded, the IGBT of the bottom arm is turned off.
- Reset after current limitation is performed in each cycle of the internal clock signal (VTR pin voltage). (See Fig.5-3.)

![Current of shunt resistance (typical)](image)
(b) How to set up

- The current limitation setting IO is calculated as follows:

 \[IO = \frac{V_{\text{ref}}}{R_s} \]

 where

 \(V_{\text{ref}} \): Standard voltage for current limitation

 \(R_s \): Shunt resistor

- In setting a current limit, you should allow for \(V_{\text{ref}} \) variance, \(R_s \) resistance variance, and the delay between the time the over current limitation is detected and the time the IGBT is turned off.

- This function is not effective for currents that do not flow forward through the shunt resistor, such as reflux current and power regenerative current (see Figs. 5-4 and 5-5). In practice, users are requested to observe and check the output currents (the coil currents of the motor) of the IC.
(c) Noises of the RS pin

- The RS pin contains a filter having a time constant of about 1 ms.
- If the system malfunctions due to a noise, an effective solution is to add a filter externally. However, beware that the external filter increases the delay time before the IGBT turns off.

(d) Precautions on wiring

- Make the wiring of the shunt resistor Rs as short as possible. The GH1 and GH2 are connected to the IGBT emitter. If the wiring has a high resistance or inductance component, the emitter potential of the IGBT changes, perhaps resulting in the IGBT malfunctioning.
- Connect the GH1 and GH2 pins near the pin. If the resistance components of the wiring is poor balanced between the GH1 and GH2 pins and the shunt resistor Rs, the current limit levels in each phase may not be equal.

(e) Motor lock

- This IC does not contain a protection function against motor lock.
- If the motor locks, the phase where the output IGBT turns on is fixed, resulting in a constant current-limited state. This produces a major loss, which results in IC temperature increase and IC gets destroyed.

(3) Protection against short-circuit

- This IC does not contain a protection function against short-circuits (such as load short-circuit, earth fault, and short-circuit between the top and bottom arms).
- A short-circuit produces a large current exceeding the maximum rating in the IC. The IC may therefore get destroyed.
5-2. Charge pump circuit

(1) Description of operation

- Fig. 5-7 shows a block diagram of a charge pump circuit. The SW1 and SW2 repeat turning on and off alternatively, synchronously with the internal clock.
- When the SW1 is off and the SW2 is on, the CL pin has a potential of 0V. Through the passage (1), charge the capacitor C1.
- Next, the SW1 is turned on and the SW2 is turned off, and the CL pin rises in potential to the VS level. Through the passage (2), the charge of the capacitor C1 is pumped up to the capacitor C2.
- This operation is repeated with the frequency of the internal clock, and the charge is given to the capacitor C2.
- The capacitor C2 constitutes a power supply for the drive circuit for the top arm.

Fig. 5-7. Charge pump circuit
5-3. Power supply sequence

(1) Power supply sequence free type
 • ECN30107, ECN30611, ECN30207, ECN30604, ECN30206 (below 1A), ECN30603 (below 1A)

(2) Power supply sequence setting type of the VSP-input type and 6-input type is described below.
 • ECN30102, ECN30105, ECN30204 : Refer to (3) (a) VSP-input type
 • ECN30601 : Refer to (3) (b) 6-input type

(3) How to set Power supply sequence
 (a) VSP-input type
 • Recommended sequences are as follows:
 - At power-up: VCC on --> VS on --> VSP on
 - At power-down: VSP off --> VS off --> VCC off
 If any sequence is involved other than those specified above, please refer to Tables 5-1 and 5-2.
 - When the VSP is no higher than the VSAWL, the power sequence is free.
 - As for the sequences No. 2 and 5 in Table 5-1, if the VS line gets noisy before the VS is powered up after the VCC and VSP are applied, the ON signal of the upper arm IGBT is reset and the motor may not start up. In such a case, first reduce the VSP to a level no higher than the all-off operating voltage (Voff), then apply it.
 - In the case of No. 4 and 6 in Table 5-1 and No. 4 and 6 in Table 5-2, see "Current Derating for Power Sequence and Vcc Voltage" of the Product Specifications.

 Table 5-1 Power up sequence (VSP-input type) Table 5-2 Power down sequence (VSP-input type)

<table>
<thead>
<tr>
<th>No.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>Permit or Inhibit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>VS</td>
<td>VSP</td>
<td>Permit</td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>VSP</td>
<td>VS</td>
<td>Permit</td>
</tr>
<tr>
<td>3</td>
<td>VS</td>
<td>VSP</td>
<td>VCC</td>
<td>Permit</td>
</tr>
<tr>
<td>4</td>
<td>VS</td>
<td>VCC</td>
<td>VSP</td>
<td>Inhibit</td>
</tr>
<tr>
<td>5</td>
<td>VSP</td>
<td>VCC</td>
<td>VS</td>
<td>Permit</td>
</tr>
<tr>
<td>6</td>
<td>VSP</td>
<td>VS</td>
<td>VCC</td>
<td>Inhibit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>Permit or Inhibit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VSP</td>
<td>VS</td>
<td>VCC</td>
<td>Permit</td>
</tr>
<tr>
<td>2</td>
<td>VS</td>
<td>VSP</td>
<td>VCC</td>
<td>Permit</td>
</tr>
<tr>
<td>3</td>
<td>VSP</td>
<td>VCC</td>
<td>VS</td>
<td>Permit</td>
</tr>
<tr>
<td>4</td>
<td>VCC</td>
<td>VSP</td>
<td>VS</td>
<td>Inhibit</td>
</tr>
<tr>
<td>5</td>
<td>VS</td>
<td>VCC</td>
<td>VSP</td>
<td>Permit</td>
</tr>
<tr>
<td>6</td>
<td>VCC</td>
<td>VS</td>
<td>VSP</td>
<td>Inhibit</td>
</tr>
</tbody>
</table>

 (b) 6-input type
 • Recommended sequences are as follows:
 - At power-up: VCC on --> VS on --> "Control input" on
 - At power-down: "Control input" off --> VS off --> VCC off
 For any sequence other than those specified above, see Tables 5-3 and 5-4.
 • The power sequence is free if the lower arm control inputs UB, VB, and WB are all low (L) and if the upper control inputs UT, VT, and WT are all low (L).
 • In the sequences No. 2 and 5 in Table 5-3, after the VCC and "control input" are applied, when a noise enters the VS line before VS power-up, the ON signal of the top arm IGBT can be reset and the motor may not start up. In such a case, the control inputs (UT, VT, and WT) for the top arm should be set to low, then power the system up again.
 • In the case of No. 4 and 6 in Table 5-3 and No. 4 and 6 in Table 5-4, see "Current Derating for power supply sequence and Vcc voltage" of the product specifications.

 Table 5-3 Power up sequence (6-input type) Table 5-4 Power down sequence (6-input type)

<table>
<thead>
<tr>
<th>No.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>Permit or Inhibit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>VS</td>
<td>Control Input</td>
<td>Permit</td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>Control Input</td>
<td>VS</td>
<td>Permit</td>
</tr>
<tr>
<td>3</td>
<td>VS</td>
<td>VCC</td>
<td>Control Input</td>
<td>Permit</td>
</tr>
<tr>
<td>4</td>
<td>VS</td>
<td>Control Input</td>
<td>VCC</td>
<td>Inhibit</td>
</tr>
<tr>
<td>5</td>
<td>Control Input</td>
<td>VCC</td>
<td>VS</td>
<td>Permit</td>
</tr>
<tr>
<td>6</td>
<td>Control Input</td>
<td>VS</td>
<td>VCC</td>
<td>Inhibit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>Permit or Inhibit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control Input</td>
<td>VS</td>
<td>VCC</td>
<td>Permit</td>
</tr>
<tr>
<td>2</td>
<td>VS</td>
<td>Control Input</td>
<td>VCC</td>
<td>Permit</td>
</tr>
<tr>
<td>3</td>
<td>Control Input</td>
<td>VCC</td>
<td>VS</td>
<td>Permit</td>
</tr>
<tr>
<td>4</td>
<td>VCC</td>
<td>Control Input</td>
<td>VS</td>
<td>Inhibit</td>
</tr>
<tr>
<td>5</td>
<td>VS</td>
<td>VCC</td>
<td>Control Input</td>
<td>Permit</td>
</tr>
<tr>
<td>6</td>
<td>VCC</td>
<td>VS</td>
<td>Control Input</td>
<td>Inhibit</td>
</tr>
</tbody>
</table>
5-4. VB power supply

- The VB power (VB = typ. 7.5V) to be output to the CB pin is generated at the VCC power. The VB power is supplied to the IC internal circuits such as the triangular wave oscillation circuit, over current detection circuit and so on.
- The VB power circuit constitutes a feedback circuit (see Fig. 5-8). To prevent oscillation, connect a capacitor C0 to the CB pin.
- The recommended capacity for the C0 is 0.22μF ± 20%. If any value other than the recommended one is to be used, refer to the below precautions and determine a suitable capacity.

<Precautions>
- As shown in Fig. 5-9, the CB pin may be oscillated depending on the C0 capacity and the output current IB.
- The larger the C0 capacity is, the more stable the VB power supply is. It is recommended, however not to set the capacity figure to an excessive level. As a guide, it should be 2μ to 3μF or less in the non-oscillated region.
5-5. Operation of the output IGBTs of the VSP-input type
(Applicable models: ECN30102, ECN30105, ECN30107, ECN30204, ECN30206, ECN30207)

(1) PWM operation
- PWM signals are generated by comparing the VSP input voltage and triangular signal (CR pin voltage).
- Chopping with PWM is conducted by the lower arm. (See Fig.5-10.)
 VSP input voltage > triangular signal; the lower arm IGBT on
 VSP input voltage < triangular signal; lower arm IGBT off
- The PWM duty varies linearly between the bottom limit (VSAWL = typ. 2.1V) and the top limit (VSAWH = typ. 5.4V) of the triangular wave amplitude level. It becomes 0% at VSAWL, and 100% at VSAWH.

(2) Output all-off function
(a) Function description
- When the input voltage of the VSP pin reaches or goes below the all-off operation voltage (Voff = typ 1.23V), this function turns off all the output IGBTs. The operation of the output IGBTs with regard to the VSP input voltage conforms to Table 5-5.

Table 5-5. Operation of the output IGBTs with regard to VSP input voltage

<table>
<thead>
<tr>
<th>VSP input voltage</th>
<th>Top arm IGBT</th>
<th>Bottom arm IGBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0V ≤ VSP < Voff (typ. 1.23V)</td>
<td>All off</td>
<td>All off</td>
</tr>
<tr>
<td>Voff (typ. 1.23V) ≤ VSP < VSAWL (typ. 2.1V)</td>
<td>As per hall signal input</td>
<td>All off</td>
</tr>
<tr>
<td>VSAWL (typ. 2.1V) ≤ VSP</td>
<td>As per hall signal input</td>
<td>As per hall signal input</td>
</tr>
</tbody>
</table>

(b) Precautions
- When the output all-off function is activated while the motor is rotating, a regenerative current is generated in the VS power supply, in some cases resulting in the VS power voltage rise. Keep the VS pin voltage equal to or below the maximum rating. Attention is particularly needed, when the capacity between the VS and GND is small, where the voltage is more likely to rise.
5-6. Internal Filter
(Applicable models: ECN30204, ECN30206, ECN30207, ECN30601, ECN30603, ECN30604)

- Internal Filter circuit is located before the Top and Bottom arm drivers (see Fig. 5-11.).
 This filter circuit removes the signal and the noise, that width is less than about 1μs (see Fig. 5-12.).
 Table 5-6. shows the effective pin of the internal filter circuit.
- The noise is coupled on Vcc line. The internal filter becomes effective, when the VCC level is dropped by
 the noise, that is lower than LVSDON voltage and that width is about 1μs or less.

Table 5-6 The effective pin of the internal filter circuit

<table>
<thead>
<tr>
<th>Model</th>
<th>ECN30204</th>
<th>ECN30206</th>
<th>ECN30207</th>
<th>ECN30601</th>
<th>ECN30603</th>
<th>ECN30604</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Pin</td>
<td>VCC*</td>
<td>VCC*</td>
<td></td>
<td>HU</td>
<td>UT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HV</td>
<td>VT</td>
<td></td>
<td>HW</td>
<td>WT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VSP</td>
<td>UB</td>
<td></td>
<td>CR</td>
<td>VB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS</td>
<td>WB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Effective only to the output signal of the LVSD Detection circuit.
5-7. Dead time
(Applicable model: ECN30611, ECN30601, ECN30603, ECN30604)

- Since this IC has an output of consisting of a totem pole of IGBTs, the IC may get destroyed when the top and bottom arm IGBTs of the same phase are turned on simultaneously. Therefore, allow for an internal delay of the IC and determine a dead time.
- Here is how the dead time (TDI) of the input pin in the IC relates to the dead time (TDO) of the output pin.
 \[TDO = TDI - TdOFF + TdON \]
 where
 - TdON: Turn-on delay
 - TdOFF: Turn-off delay
- To prevent the simultaneous turning-on of the top and bottom arms, the TDO should be set to more than zero.
 From Equation (1), TDI > TdOFF - TdON is the required setting condition of the dead time TDI. The worst case is when the TdOFF is maximum or TdON is minimum.
- The TdON and TdOFF have temperature-dependency (see Fig. 5-14 to Fig. 5-15). These should be considered as well.
- The above discussion does not allow for the effects of the populated board wiring and other elements. In practice, please monitor the power supply current and other factors, and check that the top and the bottom arm IGBTs of the same phase are not turned on simultaneously.

![Fig. 5-13. Typical dead time settings](image-url)
<table>
<thead>
<tr>
<th></th>
<th>ECN306011</th>
<th>ECN30601</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn on delay time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Top arm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn on delay time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bottom arm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn off delay time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Top arm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn off delay time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bottom arm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5-14 Temperature-dependency of TdON and TdOFF (1)
<table>
<thead>
<tr>
<th>Turn on delay time (Top arm)</th>
<th>ECN30603</th>
<th>ECN30604</th>
</tr>
</thead>
<tbody>
<tr>
<td>TdON (us)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Tj (°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn on delay time (Bottom arm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TdONB (us)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Tj (°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn off delay time (Top arm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TdOFF (us)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Tj (°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn off delay time (Bottom arm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TdOFFB (us)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Tj (°C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5-15 Temperature-dependency of TdON and TdOFF (2)
5-8. Calculation of power consumption

Here are simple formulae for calculating of power consumption generated in the VSP-input type and the six-input type. As for the constant required for calculation, contact our sales representative.

(1) VSP-input type (Inverter controlled 120-degree commutation mode, bottom arm PWM chopping)
(Applicable models: ECN30102, ECN30105, ECN30107, ECN30204, ECN30206, ECN30207)

Total IC power consumption: \(P = P_{\text{IGBT}} + P_{\text{FWD}} + P_{\text{SW}} + P_r + P_{\text{IS}} + P_{\text{ICC}} \) (W)

(1) Steady-state power dissipation of IGBTs
\(P_{\text{IGBT}} = I_{\text{AVE}} \times V_{\text{ONT}} + I_{\text{AVE}} \times V_{\text{ONB}} \times D \) (W)

(2) Steady-state power dissipation of Free Wheeling Diodes (FWDs)
\(P_{\text{FWD}} = I_{\text{AVE}} \times V_{\text{FDT}} \times (1 - D) \) (W)

(3) Switching power dissipation of IGBTs
\(P_{\text{SW}} = (E_{\text{on}} + E_{\text{off}}) \times f_{\text{PWM}} \) (W)

(4) Recovery power dissipation of FWDs
\(P_r = 1/4 \times (I_{\text{rrT}} \times V_S \times t_{\text{rrT}} \times f_{\text{PWM}}) \) (W)

(5) VS power supply consumption
\(P_{\text{IS}} = V_S \times I_S \) (W)

(6) VCC power supply consumption
\(P_{\text{ICC}} = V_C \times I_C \) (W)

Note) FWD: Free Wheeling Diode

\(I_{\text{AVE}} \): Average output current (see Fig. 5-16) (A)
\(V_{\text{ONT}} \): Drop in the output voltage of the top arm IGBT @ \(I = I_{\text{AVE}} \) (V)
\(V_{\text{ONB}} \): Drop in the output voltage of the bottom arm IGBT @ \(I = I_{\text{AVE}} \) (V)
\(D \): PWM duty
\(V_{\text{FDT}} \): Forward voltage drop in the FWD of the upper arm @ \(I = I_{\text{AVE}} \) (V)
\(E_{\text{on}} \): Switching loss when the IGBT is turned on @ \(I = I_{\text{AVE}} \) (J/pulse)
\(E_{\text{off}} \): Switching loss when the IGBT is turned off @ \(I = I_{\text{AVE}} \) (J/pulse)
\(f_{\text{PWM}} \): PWM frequency (Hz)
\(I_{\text{rrT}} \): Recovery current of the FWD of the top arm (A)
\(t_{\text{rrT}} \): Reverse recovery time of the FWD of the top arm (sec)
\(V_S \): VS power voltage (V)
\(V_C \): VCC power voltage (V)
\(I_S \): Current consumption of the high-voltage circuit (A)
\(I_C \): Current consumption of the control circuit (A)

Note) FWD: Free Wheeling Diode

![Fig. 5-16. Current waveform of the motor coil (120-degree energization)](image-url)
(2) Six-input type (inverter controlled 180° sine wave commutation mode)
(Applicable model: ECN30611, ECN30601, ECN30603, ECN30604)
- The formula given below assumes the use of 180° sine wave commutation mode (all arms PWM chopping).

Total IC power consumption; \(P = P_{\text{IGBT}} + P_{\text{FWD}} + P_{\text{SW}} + P_r + P_{\text{IS}} + P_{\text{ICC}} \) (W)

1. Steady-state power dissipation of IGBTs
 \[P_{\text{IGBT}} = I_p \times VONT_p \times (1/8 + D/3 \pi \times \cos \theta) \times 3 + I_p \times VONB_p \times (1/8 + D/3 \pi \times \cos \theta) \times 3 \] (W)

2. Steady-state power dissipation of Free Wheeling Diodes (FWDs)
 \[P_{\text{FWD}} = I_p \times VFDT_p \times (1/8 - D/3 \pi \times \cos \theta) \times 3 + I_p \times VFDB_p \times (1/8 - D/3 \pi \times \cos \theta) \times 3 \] (W)

3. Switching power dissipation of IGBT
 \[P_{\text{SW}} = (E_{\text{onP}} + E_{\text{offP}}) \times f_{\text{PWM}}/\pi \times 6 \] (W)

4. Recovery power dissipation of FWDs
 \[P_r = 1/8 \times (I_{\text{rT}} \times V_S \times trrT \times f_{\text{PWM}}) \times 3 + 1/8 \times (I_{\text{rB}} \times V_S \times trrB \times f_{\text{PWM}}) \times 3 \] (W)

5. VS power supply consumption
 \[P_{\text{IS}} = V_S \times IS \] (W)

6. VCC power supply consumption
 \[P_{\text{ICC}} = V_C \times ICC \] (W)

\(I_p \); Peak current (see Fig.5-17)
\(VONT_p \); Drop in the output voltage of the top arm IGBT @ \(I = I_p \) (V)
\(VONB_p \); Drop in the output voltage of the bottom arm IGBT @ \(I = I_p \) (V)
\((1 + D \times \sin \, \theta)/2 \); PWM duty power factor during the time \(t \)
\(\cos \theta \); Power factor
\(VFDT_p \); Forward voltage drop in the FWD of the top arm @ \(I = I_p \) (V)
\(VFDB_p \); Forward voltage drop in the FWD of the bottom arm @ \(I = I_p \) (V)
\(E_{\text{onP}} \); Switching loss when the IGBT is turned on @ \(I = I_p \) (J/pulse)
\(E_{\text{offP}} \); Switching loss when the IGBT is turned off @ \(I = I_p \) (J/pulse)
\(f_{\text{PWM}} \); PWM frequency (Hz)
\(I_{\text{rT}} \); Recovery current of the FWD of the top arm (A)
\(I_{\text{rB}} \); Recovery current of the FWD of the bottom arm (A)
\(trrT \); Reverse recovery time of the FWD of the top arm (sec)
\(trrB \); Reverse recovery time of the FWD of the bottom arm (sec)
\(V_S \); VS power voltage (V)
\(V_C \); VCC power voltage (V)
\(IS \); Current consumption of the high-voltage circuit (A)
\(ICC \); Current consumption of the control circuit (A)

Note) FWD: Free Wheeling Diode

![Fig.5-17. Current waveform of the motor coil (Inverter controlled 180° sine wave commutation mode)](image-url)
(3) Calculation of junction temperature

A junction temperature can be calculated by the following equation after measuring the temperature of the IC case (Tab).

\[T_j = T_c + R_{jc} \times P \]

- **\(T_j \)**: Junction Temperature (°C)
- **\(T_c \)**: IC case (Tab) Temperature (°C) (actual measurement)
- **\(R_{jc} \)**: Thermal resistance of between junction and IC case (Tab) (°C/W)
- **\(P \)**: Total IC power consumption (W)

- Measuring method of \(T_c \)
 The thermo-couple is set in the tab of IC (heat sink) and temperature \(T_c \) of the IC case is measured. The temperature of \(T_c \) has the time dependency, please measure the temperature after it is saturated.

5-9. Derating

- How much to derate a unit from the maximum rating is an important issue to consider a reliable design. Items to be considered in the stage of system design include the derating of voltage, current, power, load, and electric stresses, along with the derating of temperature, humidity and other environmental conditions and vibration, impact and other mechanical stresses.

- Table 5-7 specifies the standard examples of derating to be considered a reliable designing. To consider these derating items in the stage of equipment design is desirable from the point of reliability securement. If any item is difficult to control within the standard, another means will be necessary, such as selecting a device having higher maximum ratings. Please consult our sales representative in advance.

<table>
<thead>
<tr>
<th>Item</th>
<th>Typical derating standards (example)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction temperature (T_j)</td>
<td>110°C maximum</td>
</tr>
<tr>
<td>VS power supply voltage</td>
<td>185V maximum (\text{ECN30102, ECN30105, ECN30107, ECN30611})</td>
</tr>
<tr>
<td></td>
<td>450V maximum (\text{ECN30204, ECN30206, ECN30207, ECN30601, ECN30603, ECN30604})</td>
</tr>
</tbody>
</table>
5-10. External components

(1) Standard external components

Table 5-8. External components

<table>
<thead>
<tr>
<th>Applicable models</th>
<th>Parts</th>
<th>Typical value</th>
<th>Usage</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
<td>C0</td>
<td>0.22 µF +/-20%</td>
<td>Filters the internal power supply (VB)</td>
<td>Stress voltage is VB (=8.2V)</td>
</tr>
<tr>
<td></td>
<td>Rs</td>
<td>1800 pF +/-5%</td>
<td>Sets PWM frequency</td>
<td>Stress voltage is VB (=8.2V)</td>
</tr>
<tr>
<td></td>
<td>CTR</td>
<td>22 kΩ +/-5%</td>
<td>Sets PWM frequency</td>
<td>Stress voltage is VB (=8.2V)</td>
</tr>
<tr>
<td></td>
<td>RTR</td>
<td>5.6 kΩ +/-5%</td>
<td>Pull-up</td>
<td>Note2</td>
</tr>
<tr>
<td></td>
<td>C1, C2</td>
<td>1.0 µF +/-20%</td>
<td>For charge pump</td>
<td>Stress voltage is Vcc</td>
</tr>
</tbody>
</table>

ECN30204, ECN30206,	D1, D2	Hitachi DFG1C6 (Glass mold type) DFM1F6 (Resin mold type) or equivalent	For charge pump	600V, 1A, trr ≤ 100ns Note3
ECN30207, ECN30601,				
ECN30603, ECN30604				

| ECN30102, ECN30105, | D1, D2| Hitachi DFG1C4 (Glass mold type) DFM1F4 (Resin mold type) or equivalent | For charge pump | 400V, 1A, trr ≤ 100ns Note3 |
| ECN30107, ECN30611 | | | | |

Fig.5-18. Block diagram of ECN30206

Note 1: Please shorten the wiring between the resistor Rs and the Rs pin, and the wiring between the resistor Rs and the GH1/GH2 pins as much as possible.
Note 2: The PWM frequency is approximated by the following equation:
\[
\text{PWM Frequency (in Hertz)} = \frac{0.494}{(\text{CTR} \times \text{RTR})}
\]
Note: CTR is in Farads, RTR is in Ohms.
- Please set the maximum frequency of PWM is 20KHz or less.
- When the PWM frequency is set a high frequency, the switching loss is increased. And it produces an increase in temperature of IC.
- Please confirm the increased IC temperature with an actual set, and use it in the range of derating curve.

Note 3: Attention of part setting of charge pump circuit
The following attention is necessary when used excluding the standard part.
- When the voltage (V_{cp}) between $C+$ and $C-$ is dropped, the gate voltage of top arm IGBTs is dropped. And then the loss of IC increases. V_{cp} must not become $V_{cp}<10V$.

- Capacitor
 - V_{cp} is dropped by the internal dissipation current from $C+$ terminal of IC, when capacity is small.
 - The voltage impressed to the capacitor becomes V_{CC} in operation. Therefore, the withstand voltage of the capacitor is necessary more than the V_{CC} voltage.

- Diode
 - Forward voltage (V_F) recommends the small one as much as possible. Because of, V_{cp} is dropped when V_F is large.
 - Reverse recovery time (t_{rr}) recommends the small one as much as possible. Because of, Reverse recovery charge (Q_{rr}) becomes large at charge pump operation when t_{rr} is large. And then, V_{CP} is drop.
 - The withstand voltage of the diode is needed more than the V_{SS} voltage because C_L is changed from about 0V to V_{SS}.
 - The rush current flows to diode D1 and D2 by charging with capacitor C1 and C2 when the V_{CC} power supply is turned on by $V_{SS}=0V$. Please select the ratings current of the diode in consideration of this current.

(2) Other external parts
- Parts of Table 5-9 are recommended to be arranged to protect stabilization and IC of the power supply from the voltage surge.
- Please adjust the part setting according to usage conditions. And also, please set up each part close to the terminal of IC to achieve the effect of the voltage surge absorption.

<table>
<thead>
<tr>
<th>Parts</th>
<th>Purpose</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cvcc1</td>
<td>for High frequency noise suppressing</td>
<td>Ceramic capacitor with good frequency response etc.</td>
</tr>
<tr>
<td>Cvcc2</td>
<td>for V_{CC} power supply smoothing</td>
<td>Electrolytic capacitor etc.</td>
</tr>
<tr>
<td>ZDvcc</td>
<td>for Over voltage suppressing</td>
<td>Zener diode with good frequency response etc.</td>
</tr>
<tr>
<td>Cvs1</td>
<td>for High frequency noise suppressing</td>
<td>Ceramic capacitor with good frequency response etc.</td>
</tr>
<tr>
<td>Cvs2</td>
<td>for V_{SS} power supply smoothing</td>
<td>Electrolytic capacitor etc.</td>
</tr>
<tr>
<td>ZDvs</td>
<td>for Over voltage suppressing</td>
<td>Zener diode with good frequency response etc.</td>
</tr>
</tbody>
</table>
6. Handling Instruction

6-1. Mounting

(1) Insulation between pins
- High voltages are applied between the pins of the numbers specified below. Hitachi advises to apply coating or molding treatment.
 - 1 - 2, 2 - 4, 6 - 7, 8 - 9, 9 - 10, 20 - 21, 21 - 22, 22 - 23
- Coating resin comes in various types. There are some unclear points as to how much thermal and mechanical stresses are exercised on semiconductor devices by size, thickness, and other factors of board shape, and the effects of other components. In selecting coating resin, please consult with your manufacturer.

(2) Connection of tabs (radiator panels of the ICs)
- Fig. 6-1 is a cross section of the IC. The tab and the GL pin of the IC are connected with high impedance (Rp = hundreds of KΩ to several MΩ).
- Set the tab potential to open or GND.
- If the tab is mounted on the external cabinet of the motor for heat radiation purpose, the IC cannot withstand an isolation withstand voltage test where a high voltage is applied between the external cabinet and the ground. Please apply a mylar sheet or something similar between the IC tab and the external cabinet.

(3) Soldering conditions
- Hitachi's inverter ICs (packages SP-23TA, SP-23TB, and SP-23TR) can be used in flow soldering* with a peak temperature of less than 260°C and a dip time of no more than 10 seconds.

*: Flow soldering: The lead pin alone enters the solder basin, while the resin or tab does not.
6-2. Antistatic measures

- Containers and jigs for transporting ICs should be designed not to get charged under vibration or other impact during transportation. One effective measure is to use a conductive container or aluminum foil.
- Ground all work benches, machines and devices, meters, and other units that may get in contact with the ICs.
- While handling an IC, ground your body with a high resistor (about 100kΩ to 1MΩ) to prevent breakdown due to static electricity that has charged your body and/or clothes.
- Do not produce any friction with other polymer compounds.
- To move any printed circuit board or other component equipped with an IC, make sure that no vibration or friction occurs and short-circuit the pins to keep the potential at the same level.
- Exercise control so that the humidity does not go too low.
- Take enough care in handling to prevent the breakdown of ICs due to static electricity.

7. Quality

7-1. Quality tests

- Table 7-1 shows the main quality tests performed by our company.

<table>
<thead>
<tr>
<th>No.</th>
<th>Test item</th>
<th>Test conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High temperature operation</td>
<td>VCC=VCCop, VS=Vsop, Tj=135°C, t=1000h</td>
</tr>
<tr>
<td>2</td>
<td>Motor rotation continuousness operation</td>
<td>VCC=VCCop, VS=Vsop, Tj=135°C, t=1000h</td>
</tr>
<tr>
<td>3</td>
<td>High temperature storage</td>
<td>Ta= 150°C, t=1000h</td>
</tr>
<tr>
<td>4</td>
<td>Low temperature storage</td>
<td>Ta= -40°C, t=1000h</td>
</tr>
<tr>
<td>5</td>
<td>Temperature cycle</td>
<td>-65°C to room temperature, 150°C, 100cycles (30min, 5min, 30min)</td>
</tr>
</tbody>
</table>
7-2. Quality Control Flow

<table>
<thead>
<tr>
<th>Process Flow</th>
<th>Process Classification</th>
<th>Process name</th>
<th>Control Item</th>
<th>Control Method</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silicon Wafer incoming inspection</td>
<td>Wefer receive inspection</td>
<td>Resistivity Thickness</td>
<td>Sampling</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DI (dielectric isolation)</td>
<td>DI condition</td>
<td>Appearance Size</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Photo lithography</td>
<td>Photo lithography condition</td>
<td>Pattern Form</td>
<td>Sampling</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Diffusion</td>
<td>Diffusion condition</td>
<td>Resistivity Gate oxidation thickness</td>
<td>Sampling</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Metal evaporation</td>
<td>Metal evaporation condition</td>
<td>Thickness Appearance</td>
<td>Sampling</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Surface protection film deposition</td>
<td>Surface protection film deposition condition</td>
<td>Thickness Appearance</td>
<td>Sampling</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Back grinding</td>
<td>Grinding condition</td>
<td>Wafer thickness Appearance</td>
<td>Sampling</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Back metal evaporation</td>
<td>Metal evaporation condition</td>
<td>Thickness Appearance</td>
<td>Sampling</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Wafer Probing</td>
<td>Electrical characteristic</td>
<td>Electrical characteristic</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Assembling parts incoming inspection</td>
<td>Assembling parts receive inspection</td>
<td>Appearance Size Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Dicing</td>
<td>Dicing condition</td>
<td>Appearance Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Pellet appearance check</td>
<td>Appearance</td>
<td>Appearance Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Die bonding</td>
<td>Bonding condition</td>
<td>Appearance Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Joining</td>
<td>Joining condition</td>
<td>Appearance Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Wire bonding</td>
<td>Wire bonding condition</td>
<td>Appearance Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Molding</td>
<td>Molding condition</td>
<td>Appearance Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Lead plating</td>
<td>Lead plating condition</td>
<td>Appearance Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Marking</td>
<td>Marking condition</td>
<td>Appearance Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Assembly final appearance check</td>
<td>Appearance</td>
<td>Appearance Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Screening</td>
<td>Characteristic Appearance</td>
<td>Characteristic Appearance</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Final check</td>
<td>Characteristic Appearance</td>
<td>Characteristic Appearance Size</td>
<td>Sampling</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Store</td>
<td>Checking</td>
<td>Type The number Inventory code</td>
<td>Sampling</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Shipping inspection</td>
<td>Checking</td>
<td>Type The number Inventory code</td>
<td>Sampling</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Packing - Shipping</td>
<td>Shipping guide</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
8. Inverter IC Handling Note

8-1. Electrical static destruction of VSP pin caused by external surge

Cause
The external surge on the VSP line of the motor was put into IC directly.

Phenomenon
The VSP signal is not transmitted in IC, and the motor doesn't rotate.

Countermeasure
The series resistance is inserted so that the external surge is not put into IC directly. In addition, if capacitor is added, it becomes more effective.

![Fig. 8-1. Example to configuration for external parts of VSP](image)

8-2. Electrical static destruction of FG pin caused by external surge

Cause
The external surge on the FG line of the motor was put into IC directly.

Phenomenon
The FG signal of the IC is not monitored.

Countermeasure
The buffer circuit using the transistor is used on the motor populated board so that the external surge is not put into IC directly.

![Fig. 8-2. Example to configuration for external parts of FG (CMOS output case)](image)
8-3. IC destruction by external surge inputted to VS and VCC line (1)

Cause
The external surge on the VS and VCC line of the motor was put into IC. Because the Zener voltage of the surge suppressor diode was higher than the maximum rating voltage of IC, it did not protect IC.

Phenomenon
The motor doesn't rotate by the over voltage destruction of IC.

Countermeasure
Use the surge suppressor diode of the Zener voltage, which is lower than the maximum rating voltage of IC.

8-4. IC destruction by external surge inputted to VS and VCC line (2)

Cause
The external surge on the VS and VCC line of the motor was put into IC. Because the capacity of bypass capacitor for surge suppression was small, surge was not able to be suppressed enough.

Phenomenon
The motor doesn't rotate by the over voltage destruction of IC.

Countermeasure
Use the bypass capacitor for surge suppression, which capacity should be enough to suppress surge.

![Surge waveform example](image1)

Fig. 8-3. Example to surge waveform by difference of capacity of bypass capacitor

8-5. IC destruction by external surge inputted to VS and VCC line (3)

Cause
The external surge on the VS and VCC line of the motor was put into IC. Because the position of external parts for surge suppression on the motor populated board was bad, surge was not able to be suppressed enough.

Phenomenon
The motor doesn't rotate by the over voltage destruction of IC.

Countermeasure
Bypass capacitor and Zener diode for surge suppression should be mounted close to IC.

![Surge waveform example](image2)

Fig. 8-4. Example to surge waveform by difference of the location on the board of bypass capacitor
8-6. IC destruction by line noise put into VCC (1)

Cause: Pulsed noise of a voltage that is lower than LVSD level was put into VCC line of IC. In this case, IC repeats split-second LVSD operation. Then, IC will have the possibility of causing the overheating destruction.

Phenomenon: The motor doesn't rotate by the overheating destruction of IC.

Countermeasure:
1. The noise that is put into motor Vcc line is removed by reviewing the power supply circuit (inductance and so on of power cable).
2. Suppress the noise by mounting the capacitor of enough capacity between Vcc and GND pin of IC. That capacitor should be mounted close to Vcc-GND pin of IC.

\[\text{Vcc} = 15V \quad \text{VccL} \leq 10V \]

\[\text{TL} \leq 2\mu s \]

Fig. 8-5. Example to pulsed noise on Vcc at IC destruction

8-7. IC destruction by line noise put into VCC (2)

Cause: The surge voltage that exceeds the maximum ratings of IC that was put into VCC pin of IC.

Phenomenon: The motor doesn't rotate by the over voltage destruction of IC.

Countermeasure:
1. Mount a bypass capacitor C1 close to pin of IC. It's effective to use a capacitor that has excellent frequency characteristics, such as a ceramic capacitor, as a bypass capacitor. As a guide, ones of around 1\(\mu F \) are recommended (The larger the capacity, the more effective it is.).
2. It is more effective to mount a surge suppression device such as bypass capacitor C2 close to connector of motor populated board like figure 8-6.
8-8. IC destruction by relay noise of inspection machine

Cause A mechanical relay for On-off control of electric connection between IC and inspection machine was used. Surge was generated when it was on-off, and it was put into IC.

Phenomenon The motor doesn't rotate by the over voltage destruction of IC.

Countermeasure Use the wet relay (mercury relay etc.). Confirm surge is not generated when the relay is on-off.

Fig. 8-7 Example to surge waveform when mechanical relay is used

8-9. Motor failure (missing phase output)

Cause The motor has missing phase output that was shipped to the set maker.

Phenomenon The motor might start depend on the position of the rotor when starting even if the motor has missing phase output. Therefore, the missing phase output of motor cannot be detected by the motor rotation test.

Countermeasure Monitor the Motor current or the torque pulsation in order to detect the missing phase output of motor.

Fig. 8-8 Example to Motor current waveform of the motor that has missing phase output