FEATURES

- High current density package
- Low stray inductance & low Rth(j-c)
- Half-bridge (2in1)
- Built in temperature sensor
- Scalable large current easily handled by paralleling
- Equipped with current sensing terminals

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Unit</th>
<th>Min</th>
<th>Typ.</th>
<th>Max.</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Emitter Voltage</td>
<td>VCES</td>
<td>V</td>
<td>-</td>
<td>1</td>
<td>20</td>
<td>VCE=1,700V, VGE=0V, TJ=25°C</td>
</tr>
<tr>
<td>Gate Emitter Voltage</td>
<td>VGE</td>
<td>V</td>
<td>±20</td>
<td>-</td>
<td>-</td>
<td>VCE=1,700V, VGE=0V, TJ=150°C</td>
</tr>
<tr>
<td>Collector Current</td>
<td>IC</td>
<td>A</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>IC=1,000A, VCE=15V, TJ=25°C</td>
</tr>
<tr>
<td>DC</td>
<td>IF</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>1000</td>
<td>VCE=10V, VGE=0V, f=100kHz, TOJ=25°C</td>
</tr>
<tr>
<td>Forward Current</td>
<td>IFM</td>
<td>A</td>
<td>-</td>
<td>1000</td>
<td>-</td>
<td>VCE=10V, VGE=0V, f=100kHz, TOJ=25°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T(Jo)</td>
<td>°C</td>
<td>-</td>
<td>-50</td>
<td>-150</td>
<td>-5 ~ +150</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>Tstg</td>
<td>°C</td>
<td>-</td>
<td>-55</td>
<td>-150</td>
<td>-55 ~ +150</td>
</tr>
<tr>
<td>Isolation Voltage</td>
<td>VISO</td>
<td>V</td>
<td>-</td>
<td>4000</td>
<td>-</td>
<td>4,000(AC 1 minute)</td>
</tr>
<tr>
<td>Screw Torque</td>
<td>M</td>
<td>m</td>
<td>-</td>
<td>0.8</td>
<td>1/16</td>
<td>0.8/15</td>
</tr>
<tr>
<td>Terminals (M3/M8)</td>
<td>M</td>
<td>m</td>
<td>-</td>
<td>6.0</td>
<td>-</td>
<td>- (1)</td>
</tr>
<tr>
<td>Mounting (M6)</td>
<td>M</td>
<td>m</td>
<td>-</td>
<td>6.0</td>
<td>-</td>
<td>- (1)</td>
</tr>
</tbody>
</table>

Notes: (1) Recommended Value 5.5±0.5N·m

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Unit</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Emitter Cut-Off Current</td>
<td>ICES</td>
<td>mA</td>
<td>-</td>
<td>1</td>
<td>20</td>
<td>VCE=1,700V, VGE=0V, TJ=25°C</td>
</tr>
<tr>
<td>Gate Emitter Leakage Current</td>
<td>IGES</td>
<td>nA</td>
<td>-500</td>
<td>-</td>
<td>+500</td>
<td>VCE=±20V, VGE=0V, TJ=25°C</td>
</tr>
<tr>
<td>Collector Emitter Saturation Voltage</td>
<td>VCEsat</td>
<td>V</td>
<td>1.7</td>
<td>2.15</td>
<td>2.6</td>
<td>Ic=1,000A, VCE=15V, TJ=25°C</td>
</tr>
<tr>
<td>Gate Emitter Threshold Voltage</td>
<td>VGE(th)</td>
<td>V</td>
<td>5.5</td>
<td>6.5</td>
<td>7.5</td>
<td>VCE=10V, IC=1,000mA, TJ=25°C</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>Ciss</td>
<td>nF</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>Ciss=10V, VGE=0V, f=100kHz, TOJ=25°C</td>
</tr>
<tr>
<td>Internal Gate Resistance</td>
<td>RS(on)</td>
<td>Ω</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>VCE=900V, IC=1,000A</td>
</tr>
<tr>
<td>Rise Time</td>
<td>tr</td>
<td>μs</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>Ls=40nH</td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>td(off)</td>
<td>μs</td>
<td>-</td>
<td>1.1</td>
<td>-</td>
<td>R0(on/off)=2.7μΩ/10Ω</td>
</tr>
<tr>
<td>Fall Time</td>
<td>tf</td>
<td>μs</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>VCE=±15V, TJ=150°C</td>
</tr>
<tr>
<td>Forward Voltage Drop</td>
<td>VF</td>
<td>V</td>
<td>-</td>
<td>1.75</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>tr</td>
<td>μs</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>VCC=900V, Ic=1,000A, Ls=40nH</td>
</tr>
<tr>
<td>Turn-on Loss per Pulse</td>
<td>Eon</td>
<td>J/P</td>
<td>-</td>
<td>0.39</td>
<td>-</td>
<td>VCC=900V, IC=1,000mA, Ls=40nH</td>
</tr>
<tr>
<td>Turn-off Loss per Pulse</td>
<td>Eoff</td>
<td>J/P</td>
<td>-</td>
<td>0.38</td>
<td>-</td>
<td>R0(on/off)=2.7μΩ/10Ω</td>
</tr>
<tr>
<td>Reverse Recovery Loss per Pulse</td>
<td>Etr</td>
<td>J/P</td>
<td>-</td>
<td>0.39</td>
<td>-</td>
<td>VCE=±15V, TJ=150°C</td>
</tr>
<tr>
<td>Short Circuit Pulse Width</td>
<td>LSC</td>
<td>μH</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>VCC=1300V, Ls=40nH</td>
</tr>
<tr>
<td>Stray Inductance Module</td>
<td>LSCE</td>
<td>nH</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>Between C1(main) and E2(main)</td>
</tr>
<tr>
<td>NTC-Thermistor</td>
<td>Res</td>
<td>kΩ</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>Tc=25°C</td>
</tr>
<tr>
<td>Deviation</td>
<td>dR/R</td>
<td>%</td>
<td>-5</td>
<td>5</td>
<td>-</td>
<td>Tc=25°C</td>
</tr>
<tr>
<td>B-constant</td>
<td>B25(50)</td>
<td>K</td>
<td>-</td>
<td>3375</td>
<td>-</td>
<td>Between 25°C and 50°C</td>
</tr>
<tr>
<td>Thermal Impedance</td>
<td>Rth(i-c)</td>
<td>K/W</td>
<td>-</td>
<td>0.032</td>
<td>-</td>
<td>Junction to case</td>
</tr>
<tr>
<td>Contact Thermal Impedance</td>
<td>Rth(c-f)</td>
<td>K/W</td>
<td>-</td>
<td>0.053</td>
<td>-</td>
<td>Case to fin (per 1 arm)</td>
</tr>
</tbody>
</table>

Notes: (2) R0 value is a test condition value for evaluation, not recommended value.

Please determine the suitable R0 value by measuring switching behavior and checking results with the respective SOA.

* Please contact our representatives at order.

* For improvement, specifications are subject to change without notice.

* For actual application, please confirm this spec sheet is the newest revision.

* ELECTRICAL CHARACTERISTIC items shown in above table are according to IEC 60747–2 and IEC 60747–9.
OUTLINE DRAWING

Weight: 770(g)
IGBT MODULE
Spec.No.IGBT-SP-16034 R6 P 4

MBM1000FS17G

Switching time vs. Collector Current

Conditions
- $L_s=40\,\text{nH}$
- $V_{CC}=900\,\text{V}$
- $R_g=2.7\,\Omega/10\,\Omega$
- $V_{GE}=\pm15\,\text{V}$
- $T_{uj}=150\,^\circ\text{C}$
- $T_{uj}=25\,^\circ\text{C}$

Switching time t_{on}, t_{off}, t_{rr}, t_{tr} (\text{ms})

- $t_{on}=1.43\times10^{-6}x^2 - 2.03\times10^{-6}x - 1.33\times10^{-6}$
- $t_{off}=4.39\times10^{-6}x^2 - 4.99\times10^{-6}x + 5.59\times10^{-6}$
- $t_{rr}=3.05\times10^{-6}$
- $t_{tr}=2.27\times10^{-6}$

Recovery Loss vs. Forward Current

Conditions
- $L_s=40\,\text{nH}$
- $V_{CC}=900\,\text{V}$
- $R_g=2.7\,\Omega/10\,\Omega$
- $V_{GE}=\pm15\,\text{V}$
- $T_{uj}=150\,^\circ\text{C}$
- $T_{uj}=25\,^\circ\text{C}$

Recovery Loss E_{rr} (\text{J/pulse})

- $E_{rr}=5.62\times10^{-11}x^3 - 3.10\times10^{-7}x^2 + 5.99\times10^{-6}x + 5.03\times10^{-2}$
- $E_{rr}=3.21\times10^{-11}x^3 - 1.77\times10^{-7}x^2 + 3.43\times10^{-6}x + 2.88\times10^{-2}$

Turn-on Loss vs. Collector Current

Conditions
- $L_s=40\,\text{nH}$
- $V_{CC}=900\,\text{V}$
- $R_g=2.7\,\Omega/10\,\Omega$
- $V_{GE}=\pm15\,\text{V}$
- $T_{uj}=150\,^\circ\text{C}$
- $T_{uj}=25\,^\circ\text{C}$

Turn-on Loss E_{on} (\text{J/pulse})

- $E_{on}=1.43\times10^{-20}x^6 - 2.03\times10^{-17}x^5 - 1.33\times10^{-13}x^4 + 4.29\times10^{-10}x^3 + 5.59\times10^{-6}x + 3.05\times10^{-2}$
- $E_{on}=1.51\times10^{-20}x^6 - 9.89\times10^{-14}x^4 + 3.19\times10^{-10}x^3 + 4.16\times10^{-6}x + 2.27\times10^{-2}$

Turn-off Loss vs. Collector Current

Conditions
- $L_s=40\,\text{nH}$
- $V_{CC}=900\,\text{V}$
- $R_g=2.7\,\Omega/10\,\Omega$
- $V_{GE}=\pm15\,\text{V}$
- $T_{uj}=150\,^\circ\text{C}$
- $T_{uj}=25\,^\circ\text{C}$

Turn-off Loss E_{off} (\text{J/pulse})

- $E_{off}=1.06\times10^{-20}x^6 - 1.51\times10^{-17}x^5 - 9.89\times10^{-14}x^4 + 3.19\times10^{-10}x^3 + 4.16\times10^{-6}x + 2.27\times10^{-2}$

Collector Current I_c (A)

- 0.00 to 2.00 A
- 0.00 to 2.00 A
- 0.00 to 2.00 A
Turn-on Loss vs. Gate Resistance

- Conditions:
 - $T_{j}=150°C$
 - $I_a=1000A$
 - $V_{CC}=900V$
 - $V_{GE}=±15V$

Turn-off Loss vs. Gate Resistance

- Conditions:
 - $T_{j}=150°C$
 - $I_a=1000A$
 - $V_{CC}=900V$
 - $V_{GE}=±15V$

Recovery Loss vs. Gate Resistance

- Conditions:
 - $T_{j}=150°C$
 - $I_a=1000A$
 - $V_{CC}=900V$
 - $V_{GE}=±15V$

Switching time vs. Gate Resistance

- Conditions:
 - $T_{j}=150°C$
 - $I_a=1000A$
 - $V_{CC}=900V$
 - $V_{GE}=±15V$
MBM1000FS17G

RBSOA

Reverse bias safe operation area (RBSOA)

Reverse Recovery SOA

Conditions:
- $L_s \leq 40\,\text{nH}$, $V_{cc} \leq 1200\,\text{V}$, $I_F \leq 2000\,\text{A}$, $di/dt \leq 8000\,\text{A/us}$, $T_j = 150^{\circ}\text{C}$

Definition of Recovery di/dt

\[
\frac{\Delta}{\Delta t} (0 - 0.5I_{rm})
\]

Definition of RBSOA waveform

$V_c e$ (spike Voltage)

I_c (to be turned off)

Pmax \leq 1.2\,\text{MW}

Reverse Recovery SOA

Conditions:
- $V_{cc} \leq 1200\,\text{V}$, $I_c \leq 2000\,\text{A}$, $R_{G(OFF)} \geq 10\,\Omega$
- $V_{GE} = \pm 15\,\text{V}$, $T_j = 150^{\circ}\text{C}$
- $L_s \leq 40\,\text{nH}$, on pulse width $\geq 10\,\text{us}$

(Vce spike voltage and L_s are defined at auxiliary terminal)
MBM1000FS17G

IGBT MODULE

Typical

Thermistor Resistance vs. Temperature

- **Case Temperature, **Tc (°C)

Thermistor Resistance (kΩ)

- **Maximum**

Transient Thermal Impedance Curve

- **Cies, Coes, Cres (nF)**

**Collector to Emitter Voltage, **VCE (V)

- **Collector Emitter Voltage, **VCE (V)

- **Capacitance vs. Collector to Emitter Voltage**

Conditions

- Tj=25°C
- f=100kHz
HITACHI POWER SEMICONDUCTORS

Notices

1. The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact Hitachi sales department for the latest version of this data sheets.

2. Please be sure to read "Precautions for Safe Use and Notices" in the individual brochure before use.

3. In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users’ fail-safe precautions or other arrangement. Or consult Hitachi’s sales department staff.

4. In no event shall Hitachi be liable for any damages that may result from an accident or any other cause during operation of the user’s units according to this data sheets. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this data sheets.

5. In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.

6. No license is granted by this data sheets under any patents or other rights of any third party or Hitachi Power Semiconductor Device, Ltd.

7. This data sheets may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi Power Semiconductor Device, Ltd.

8. The products (technologies) described in this data sheets are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety not are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.

For inquiries relating to the products, please contact nearest overseas representatives that is located “Inquiry” portion on the top page of a home page.

Hitachi power semiconductor home page address http://www.hitachi-power-semiconductor-device.co.jp/en/